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Abstract: COMSOL Multiphysics was used to 
solve a phonon Boltzmann transport equation 
(BTE) for nanoscale heat transport problems.  
One-dimensional steady-state and transient BTE 
problems were successfully solved based on 
finite element and discrete ordinate methods for 
spatial and angular discretizations, respectively, 
by utilizing the built-in feature of the COMSOL, 
Coefficient Form of PDE.  A sensitivity study 
was conducted with various discretization 
refinements for different values of the Knudsen 
number, which is a measure of the nanoscale 
regime.  It was found that sufficient refinement 
for angular discretization is critical in obtaining 
accurate solutions of the BTE. 
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1. Introduction 
 

For the last two centuries, many heat 
conduction problems have been modeled 
successfully by a Fourier diffusive equation 
(FDE).  The equation can be derived using a 
conservation law of energy and Fourier’s linear 
approximation of heat flux using a temperature 
gradient.  The FDE is a parabolic equation 
reflecting a diffusive nature of heat transport.  
An underlying assumption is that the heat is 
effectively transferred between localized regions 
through sufficient scattering events of phonons 
within a medium.  Therefore, the FDE does not 
hold when the number of scatterings is negligible, 
which could happen when a mean free path of 
phonon is similar or a larger order of magnitude 
than a domain size of interest, significant 
boundary scattering occurs at material interfaces 
causing thermal resistance, etc.  Another 
problem of the FDE is that it admits an infinite 
speed of the heat transport, which is 
contradictory to the theory of relativity.  
Therefore, the FDE is inappropriate for the heat 
transfer problems at small time and spatial scales. 

To resolve the issue of the infinite speed of 
heat carrier, hyperbolic equationns, such as a 
Cattaneo equation (Telegraph equation) [1] or a 
relativistic heat equation [2], are often used to 
reflect a wave nature of the heat transport for 
cases of small speed of heat propagation (e.g., 
low temperature, low conductive medium, 
thermal insulator, phase transition, etc.) and/or 
high speed of heat flux (e.g., pico- or femto-
second pulsed-laser heating.)  Despite some 
issues [1], these hyperbolic equations can be 
used to consider the finite speed of phonons for a 
short time scale.  However, they still cannot be 
used for small spatial scale. 

For the nanoscale heat transfer analysis, one 
needs equations and methods for small-scale 
simulation in terms of both time and space.  A 
molecular dynamics (MD) simulation can be a 
useful and accurate method in this regard.  
However, the MD simulation is usually 
computationally expensive, so it is suitable for 
systems having a few atomic layers or several 
thousand atoms, but not suitable for device-level 
thermal analysis.  Alternatively, a phonon 
Boltzmann transport equation (BTE), a first-
order partial differential equation for a phonon 
distribution function, has been used for this 
purpose [3-5].  The distribution function is a 
scalar quantity in the six-dimensional phase 
space (three space coordinates and three wave-
vector coordinates).  The phonon BTE is also 
called an equation of phonon radiative transfer 
(EPRT) when the phonon distribution function is 
replaced with a phonon intensity function [3].  
The BTE is known to be difficult to solve, and 
thus often simplified with a relaxation time 
approximation.  The BTE can predict a ballistic 
nature of heat transfer under an assumption that 
particle-like behaviors of phonon are much more 
significant than its wave-like behaviors, which 
make the BTE valid for structures larger than the 
wavelength of phonons.  The BTE can be solved 
analytically for simple geometries [4, 6, 7], or 
numerically for complex geometries by using 
either deterministic methods (e.g., discrete 
ordinates method, spherical harmonics method, 
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finite volume method [8], etc.) or statistical 
methods (e.g., Monte Carlo simulation [9, 10]).  
In general, solving the BTE is much more 
efficient than the MD, and the predictions agree 
well with experimental data [10, 11]. 

In the present study, we will solve the BTE 
with the relaxation time approximation for one-
dimensional heat transport problems using the 
COMSOL Multiphysics.  We will combine the 
finite element (FE) capability of the COMSOL 
with the DOM to solve both steady-state and 
transient heat transfer problems.  The numerical 
results will be compared with analytical ones for 
the steady-state problem.  A sensitivity study 
will be conducted for various scale measures to 
show the difference between the BTE solutions 
with the conventional FDE ones.  Furthermore, 
we will determine a suitable discretization 
scheme for spatial and angular spaces in order to 
obtain reliable transient solutions in using the 
COMSOL. 
 
2. Use of COMSOL Multiphysics 
 

The BTE equation under a relaxation time 
approximation is written as 
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where f  is the carrier distribution function, of  
the equilibrium distribution, v  the carrier group 
velocity vector, and oτ  the relaxation time.  The 
EPRT in terms of the phonon intensity is written 
as 
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where the phonon intensity is expressed as 
πωωω 4/)(),,(),,( DtftI rvvrv h= , where h  is 

the reduced Planck constant, ω  the phonon 
angular frequency, and )(ωD  the density of state 
per unit volume.  An equilibrium phonon 
intensity in Eq. (2) is written as 
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For one-dimensional problems, Eq. (2) becomes  
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where θ  is a polar angle between a phonon 
propagation direction and the global heat transfer 
direction ( x ). 

A solution process of the 1-D BTE in Eq. (4) 
along with Eq. (3) can be summarized as 
follows:  With an initial value of oIω , Eq. (4) is 
solved for the phonon intensity field, ),( xtIω , for 
a particular phonon propagation angle, θ .  After 
obtaining the solutions for all possible solid 
angles, π4 , oIω  can be calculated using Eq. (3).  
With this updated value of oIω , the solution 
process repeats until the convergence of 

ωI  and 

oIω .  Therefore, the BTE and thus the EPRT are 
highly nonlinear equations to solve.  Once the 
phonon intensity is solved, heat flux and an 
equivalent temperature can be obtained by 
integrating the phonon intensity over the solid 
angles, π4 , such that 
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where c  is the volumetric specific heat. 
One of the most widely used methods for 

solving the BTE numerically is the discrete 
ordinates method (DOM).  The DOM is a tool to 
transform the equation of radiative transfer into a 
set of simultaneous partial differential equations.  
This is based on a discrete representation of 
directional variation of intensity.  A solution to 
the transport problem can be found by solving 
the equation of radiative transfer for a set of 
discrete directions spanning the entire solid angle.  
The integrals over the solid angle can be 
approximated by numerical integration using 
Gauss-Legender quadratures. 

The BTEs in Eqs. (3)-(4) were solved by the 
DOM using a built-in feature of Coefficient 
Form PDEs in COMSOL Multiphysics.  The 
spatial domain ( x ) was discretized into n  
elements as a normal FE mesh refinement, while 
the angular domain (Ω ), referred to as ordinates, 
was discretized in the directional coordinates by 
dividing the angular space into a finite number, 
m .  The angular domain was discretized at 
Gaussian quadrature points within 

1cos1 ≤=≤− θµ .  For each polar angle ( mθ ), we 
solved the system of nonlinear equations for the 
phonon intensity, mxtI µω ,,( ), and then updated 
the equilibrium phonon intensity, ),( xtI oω , using 



ωI  for all angles.  Eqs. (3) and (5) can be written 
in discrete forms as 
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respectively.  The weight satisfies 2=∑m mw . 

The solver used for the steady-state and 
transient analyses was a built-in direct solver, 
UMFPACK.  Default values were used for the 
solver parameters except that strict time steps 
were taken by the solver and a maximum BDF 
order was set to 1.  When the relative error of the 
calculated value of the equivalent equilibrium 
intensity between two iteration steps was less 
than a present tolerance, we considered the 
problem was converged and then calculated the 
equivalent temperature and heat flux using Eqs. 
(6) and (8), respectively. 
 
5. Results and Discussion 
 

We have solved the BTE equations with the 
COMSOL under both steady-state and transient 
states.  Spatial and angular domains were 
discretized into n  elements and m  quadrature 
points, respectively.  A quadratic Lagrange 
element was used for the spatial FE mesh.  The 
total degree of freedom for the 1-D problem 
becomes )21(2 +nm .  For the steady-state 
problems, it was observed that the well-
converged solutions were obtained with a 
relatively coarse mesh (15 elements) while 
using 16 quadrature points.  The sensitivity of 
mesh and quadrature points for the transient 
analysis will be stated later in this section. 

Figure 1 shows steady-state temperature 
distributions via nondimensional emissive power 
( *

oe ) along the 1-D domain for various Knudsen 
numbers ( Kn ).  For comparison purpose, an 
analytical solution was also obtained by using an 
analogy to the radiation heat transfer [5] by 
solving an integral equation, 
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where Lx=η  is the nondimensional coordinate, 
where L  is the length of the domain, 
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integral, ξ  the optical thickness, which is an 

inverse of the Knudsen number, LKn Λ= , 
where Λ  is the average mean free path of 
phonons, and ][])([)( 212

* −+− −−= qqqoo JJJee ηη  is 
the emissive power nondimensionalized by a 
difference of boundary heat fluxes ( −

2qJ  and +
1qJ ) 

at both ends of the 1-D domain.  In Figure 1, the 
analytic and numerical solutions for various Kn  
(= 0.1, 1, 10, 100) were drawn with markers and 
lines, respectively, which shows an excellent 
agreement of the solutions with each other.  
While the conventional Fourier solution would 
yield the temperature gradient varying from 1 at 

0=η   to 0 at 1=η , the solution from the BTE 
yields a reduced temperature gradient.  The 
larger the Knudsen number, the smaller the 
temperature gradient, which is attributed from 
more ballistic phonon transport as compared to 
the diffusive one. 
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Figure 1. Steady-state nondimensionalized emissive 
power distribution for various Knudsen numbers. 
 

We studied the effects of refinements in 
terms of spatial FE meshes and angular 
quadrature points on the time-dependent 
transient BTE solutions.  The transient time ( t ) 
was nondimensionalized by the relaxation time 
of phonons ( oτ ), so that ott τ=* .  Figure 2 
shows nondimensionalized temperature 
distributions at 1.0* =t  along the 1-D domain for 

10=Kn .  We used three different FE meshes (15, 
60 and 120 elements) and a fixed angular 
division with 16 Gaussian points ( 16gp =n ).  The 
three FE meshes yield nearly identical 
temperature solutions with a decreasing trend 
from the hot side ( 0=η ) to the cold side ( 1=η ).  



Smooth solutions were obtained except at a 
region near the hot boundary.  An inset 
rectangular area in Figure 2 within 3.00 ≤≤η  
was zoomed in and replotted in Figure 3, which 
clearly shows significant wiggles near the hot 
boundary.  Therefore, the FE mesh refinement 
does not help smoothing out the wiggles at all.  
The wiggling of the solution, called a ray effect, 
is known to be attributed to insufficient 
refinement in the angular domain, and thus 
cannot be smoothed out with the FE mesh 
refinement in the spatial domain. 
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Figure 2. Transient nondimensional temperature 
distribution predicted with 15, 60 and 120 finite 
elements and 16 Gaussian points. 
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Figure 3. A magnified view of Figure 2 within 

3.00 ≤≤η . 
 

To eliminate the ray effect, we made further 
refinement in the angular domain by using more 
quadrature points.  Figure 4 shows 
nondimensionalized temperature distributions at 

1.0* =t  along the 1-D domain for 10=Kn  
predicted with six different Gaussian quadrature 
points ( 128,64,32,16,8,4gp =n ).  We utilized a 
Matlab-scripting feature of COMSOL to 
implement the large 

gpn  in building the system 
of equations.  A fixed spatial division with 240 
FE elements was used in these calculations.  An 
inset rectangular area within 3.00 ≤≤η  was 
magnified and replotted in Figure 5.  Although a 
highly refined FE mesh (240 elements) was used, 
the coarse angular divisions alleviate the 
wiggling of the solution (e.g., 4gp =n ).  The 
wiggles near the hot end gradually decrease with 
the increase of 

gpn , and thus the ray effect.  
Therefore, we found that the spatial and angular 
refinements are independent of each other, and 
thus do not recommend to use the highly refined 
spatial mesh with the coarse angular mesh. 
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Figure 4. Transient nondimensional temperature 
distribution predicted with 240 finite elements and six 
Gaussian quadrature points (

gpn ) for angular 

discretization. 
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Figure 5. A magnified view of Figure 5 within 

3.00 ≤≤η . 
 
Figure 6 and Figure 7 show the temperature 

and heat flux distributions, respectively, at 
various time scales with three different Knudsen 
numbers.  The result successfully reproduced the 
one reported earlier by Chen [4], but this time 
using the FE method using the COMSOL.  The 
figures show the heat transfer from the hot side 
to the cold side with the finite speed of phonon 
as the short term (small *t ) solutions indicate, 
which cannot be predicted by the FDE.  While 
constant temperatures were applied as boundary 
conditions at both sides, we can observe the 
temperature jump at these boundaries.  The 
higher the Kn , the larger the jump.  The reason 
for the temperature jump at these emissive 
boundaries was well explained in earlier work 
[7].  For a small Knudsen number at 1.0=Kn , 
the temperature solution approaches that of the 
steady-state FDE as the time increases, while for 

a large Knudsen number at 10=Kn , the 
temperature solution approaches a nearly 
horizontal line, which indicates the ballistic heat 
transfer rather than the diffusive one, and results 
in a small temperature gradient and thus a large 
thermal conductivity. 
 
6. Conclusions 
 

We have solved the phonon Boltzmann 
transport equation for the nanoscale heat transfer 
problems with the COMSOL Multiphysics.  
One-dimensional steady-state and transient 
problems were successfully solved using FEM 
and DOM for spatial and angular discretizations, 
respectively, by utilizing the built-in feature of 
the COMSOL, Coefficient Form of PDE. 

A sensitivity study was conducted with 
various discretization refinements for different 
values of the Knudsen number, which is a 
measure of the nanoscale regime.  Significant ray 
effects were found with coarse angular 
discretizations.  However, false scattering due to 
coarse spatial discretization was not severe with 
the COMSOL solution.  It was found that the 
spatial and angular refinements were 
independent of each other, and it was not 
recommended to use the highly refined spatial 
mesh with the coarse angular mesh in solving the 
BTE with the COMSOL.  The present success 
with the 1-D simulation encourages us to apply it 
for multidimensional cases. 
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Figure 6. Temperature distributions at different time scales. (a) 10=Kn , (b) 1=Kn  and (c) 1.0=Kn . 

(c) (a) (b) 
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Figure 7. Heat flux distributions at different time scales. (a) 10=Kn , (b) 1=Kn  and (c) 1.0=Kn . 
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• Background information.

• Description of phonon Boltzmann transport equation (BTE).

• Modeling and solution procedure of BTE using COMSOL.

• Results

– Steady-state and transient problems.

– Issues of refinement in spatial and angular domains.

• Summary and conclusions.
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• For last two centuries, heat conduction has been modeled by Fourier Eq (FE).

– Conservation of energy:

– Fourier’s linear approximation of heat flux:



• Parabolic equation —> Diffusive nature of heat transport.

• Heat is effectively transferred between localized regions through sufficient 
scattering events of phonons within medium.

• Does not hold when number of scattering is negligible.
– e.g., mean free path ~ device size (chip-package level). 

– Boundary scattering at interfaces causing thermal resistance.

• Admits infinite speed of heat transport —> Contradict with theory of relativity.
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Fourier Equation (FE)
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 Fourier Equation cannot be used for small time and spatial scales.



• Resolve the issue of the Fourier equation with the infinite speed of heat carrier.



– Definition of heat flux:

• Hyperbolic equation —> Wave nature of heat transport.

• Called as Cattaneo equation or Telegraph equation.

• Finite speed of heat carriers.

• Ad hoc approximation of heat flux definition.

• Violates 2nd law of thermodynamics.
– If heat source varies faster than speed of sound, heat would appear to be moving from 

cold to hot.

Hyperbolic Heat Conduction Equation (HHCE)
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 HHCE: could be used for short time scale, but not for short spatial scale.



• Fourier Equation cannot be used for small time and spatial scales.
• HHCE: could be used for short time scale, but not for short spatial scale.

• Needs equations and methods for small scale simulation in terms of both 
time and space.
– Molecular dynamics simulation.

• Accurate method.
• Computationally expensive.
• Suitable for systems having a few atomic layers or several thousands of atoms.
• Not suitable for device-level thermal analysis.

– Boltzmann Transport Equation (BTE).

– Ballistic-Diffusive Equation (BDE).
• Similar to Cattaneo Eq. (HHCE) with a source term.
• Derived from BTE.
• Good approximation of BTE without internal heat source, disturbance, etc.

5

Small Scale Heat Transport (Time & Space)



• BTE: also called as equation of phonon radiative transfer (EPRT).

• Equation for phonon distribution function:

• Can predict ballistic nature of heat transfer.

• Neglects wave-like behaviors of phonon.
– Valid for structures larger than wavelength of phonons (~ 1 nm @ RT).

• Solution methods:
– Deterministic: discrete ordinates method, spherical harmonics method.

– Statistical: Monte Carlo.

• Much more efficient than MD.

• Agrees well with experimental data.
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Boltzmann Transport Equation (BTE)

T1

T2

x L

Λ<<L
o

o ff
t
ff

t
f

τ
−

≈







∂
∂

=∇⋅+
∂
∂

scat

v
Ballistic



• Phonon intensity:

• BTE becomes EPRT:

• For 1-D, 

• For each angle (θ ), solve non-linear equation with iterations for
– Solving for Ιω.

– Updating Ιωο.

• Heat flux:

• Internal energy:
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Details of Boltzmann Transport Equation (BTE)
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Modeling & Solution Procedure using COMSOL

• Use a built-in feature of COMSOL, “Coefficient Form PDEs”.

• The spatial domain is discretized using FE mesh.

• The angular (momentum) domain is discretized using Gaussian quadrature 
points.

• For each angle (θ ), set up the BTE with corresponding coefficients (µi=cosθi) 
and BCs (Neumann vs. Dirichlet).

• Calculate equilibrium phonon intensity (Io) by numerical integration of (Ii) using 
Gaussian quadratures.

• Solve.
– Direct solver (UMFPACK).
– Max. BDF order = 1.

• Postprocess and visualize the results.
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• Original 1-D BTE:

• Nondimensionalize with

• Split into (+) and (-) directions:

• Discretize angular space at
Gaussian quadrature points:

• After FE run, postprocess:
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Details of Solution Procedure
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Coefficient Form for BTE
(60 Finite elements, 16 Gaussian Points)
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Steady-State Problem: Analytic vs. Numerical Solutions
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Steady-State Problem: Analytic vs. Numerical Solutions
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Transient Problem:  Effect of Spatial Refinement
(More Finite Elements)

Temperature @ t*=0.1

Ray effect.

• Refine spatial (x-) direction with n finite elements (n=15, 60, 120).

• Divide angular direction with 16 Gaussian points (ngp=16).
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• Spatial refinement leads to a smoother 
solution.

• However, it does not solve ray effect.
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Transient Problem:  Effect of Angular Refinement
(More Gaussian Points)

Temperature @ t*=0.1

• Refine spatial (x-) direction with 240 FE elements.

• Divide angular direction with ngp Gaussian points (ngp=4,8,16,32,64,128).
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• Angular refinement resolve ray effect.

• Spatial and angular refinements are 
independent.

• Highly refined spatial mesh with coarse 
angular mesh alleviates solution.
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Results of BTE
(Temperature & Heat Flux Distributions with Time Increase)

Kn=10 Kn=1 Kn=0.1
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Comparisons of FE, HHTC, BDE vs. BTE
(Temperature & Heat Flux Distributions for 3 Kn)
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• Nanoscale simulation is conducted for phonon heat transfer using 
Boltzmann transport equation.
– Phonons for dielectric, thermoelectric, semiconductor materials.
– Electrons for metals.
– Gas molecules for rarefied gas states.

• Numerical solution of BTE has been obtained for 1-D problem (both 
steady-state and transient problems).

• Temperature and heat flux distributions from the nanoscale simulation 
yield completely different results from the solutions from Fourier and 
Cattaneo equations.

– Thermal conductivity will be different, too.
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Summary and Conclusions


